

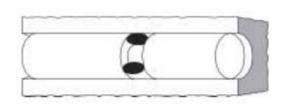
WHITE PAPER

Princípios básicos da vedação com O'Rings

1) Você sabe o que é um O'Ring, qual a sua função e quais as suas limitações de uso?

Um O'Ring é um objeto toroidal, geralmente feito de elastômero, embora alguns materiais tais como plástico e metais sejam algumas vezes utilizados.

Hoje, o O'Ring é provavelmente o mais versátil dispositivo de vedação conhecido. Ele oferece uma série de vantagens sobre outros métodos de vedação numa grande variedade de aplicações.


Princípios básicos da vedação com O'Rings

A vedação com O'Ring é um meio de fechar a passagem e prevenir uma indesejável perda ou transferência de fluido através da capacidade do material de se deformar e retornar ao seu estado inicial, capacidade essa conhecida como RESILIÊNCIA.

A clássica vedação com O'Ring consiste de dois elementos, o próprio O'Ring e o adequado alojamento ou canal para confinar o material elastomérico. A ilustração abaixo mostra uma típica vedação com O'Ring.

Função do O'Ring

O elastômero é confinado no alojamento, e forçado a moldar-se para preencher as irregularidades da superfície das partes e qualquer folga existente, criando, dessa maneira, entre as partes, a condição de "folga zero", promovendo o efetivo bloqueio do fluido.

A carga que força o O'Ring a amoldar-se é fornecida mecanicamente pelo "aperto" gerado pelo desenho apropriado do alojamento e do material selecionado, e pela pressão do sistema, transmitida pelo próprio fluido ao elemento de

vedação. De fato, podemos dizer que a vedação com O'Ring é "pressurizada", de modo que quanto maior a pressão do sistema, mais efetiva será a vedação, até que os limites físicos do elastômero sejam excedidos, e o O'Ring comece a ser extrudado através da folga entre as partes. Esta condição pode, entretanto, ser evitada pelo projeto adequado do alojamento, seleção adequada do material do O'Ring, e pelo uso de Parbaks (dispositivos de antiextrusão).

Limitações no uso de O'Ring

Existem certas limitações de uso, entre elas a alta temperatura, atrito em alta velocidade, furos de admissão de óleo dos cilindros sobre os quais o vedante deva passar e folgas muito grandes.

Os O'Ring, entretanto, podem ser considerados para todos os projetos de vedação com exceção dos seguintes:

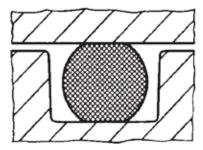
- 1. Velocidade de rotação acima de 500 m/minuto
- 2. Ambiente (tipo de fluido e temperatura) incompatível com os elastômeros disponíveis
- 3. Insuficiência de espaço disponível para sua colocação

2) Você sabe qual o cuidado que deve ter quando for utilizar O'Ring em Vedações Dinâmicas?

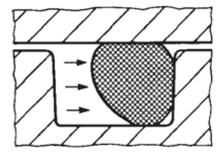
Nas vedações dinâmicas, devido ao movimento contra o O'Ring, estão envolvidos mais fatores que nas vedações estáticas. Desta forma, alguns cuidados devem ser verificados, são eles:

A resistência ao fluido deve ser mais criteriosamente analisada, pois um aumento de volume maior que 20% pode criar dificuldades, e apenas um mínimo de contração (4% na maioria das vezes) pode ser tolerado.

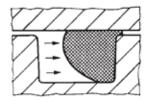
A superfície na qual o O'Ring deverá se movimentar também se torna importantíssima; ela deverá ser dura e resistente ao desgaste, e deverá ser suficientemente lisa para não atacar

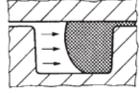


o anel, devendo ainda ser microporosa para reter a lubrificação necessária.


A maioria das vedações com O'Ring em aplicações dinâmicas, são de movimento recíproco, encontradas nas hastes e pistões de cilindros hidráulicos e pneumáticos.

3) Você sabe o que é a Extrusão em um O'Ring?


Antes da pressurização, o O'Ring se aloja deformado entre as duas superfícies.



Ao ser pressurizado, o O'Ring atua como um fluido incompressível, exercendo uma pressão sobre o alojamento, proporcional à pressão do sistema.

Em altas pressões, uma grande quantidade de material é forçada a entrar na folga, que por sua vez causa dano ao O'Ring.

A extrusão se caracteriza por um descascamento, ou por "mordeduras" na superfície do O'Ring, sendo a causa mais frequente de falha dos O'Rings.

O'Ring extrudado

O'Ring com "mordeduras"

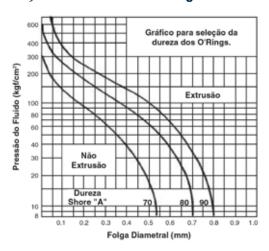
O'Ring descascado

Este tipo de falha é mais encontrado em aplicações dinâmicas, já que o material é aprisionado na folga e cortado. Os elementos de máquinas que "respiram" ou funcionam com pressões altas ou pulsantes, são especialmente suscetíveis à extrusão.

A falha por extrusão ocorre nas seguintes situações:

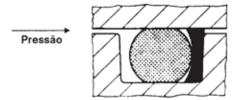
- Tolerâncias desnecessariamente abertas
- · Alta pressão
- O'Ring muito "macio"
- Variações físicas ou químicas que debilitam o O'Ring
- Excentricidade
- · Cantos vivos nos alojamentos
- Dimensões do O'Ring não apropriadas

Para evitar essas falhas por extrusão, as medidas corretivas são:


- · Tolerâncias mais justas
- Utilização de Parbaks®
- · Aumentar a dureza do O'Ring
- Verificar e comprovar a compatibilidade com o fluido

- · Evitar a excentricidade
- Reforçar os componentes dos equipamentos para evitar a dilatação e contração por pressão (respiração)
- Manter os raios de cantos do alojamento dentro da faixa de 0,10 a 0,40 mm

A gama de pressões dadas pelo gráfico de extrusão (veja gráfico abaixo) foi obtida por experimentação e dão boas indicações de como e quando é necessário utilizar-se os anéis antiextrusão Parbaks® Parker.


Seleção de dureza dos O'Rings

A necessidade do uso de anéis Parbaks® (antiextrusão) dependerá da pressão, do tipo de borracha a ser usado, sua dureza, tamanho da folga diametral e do grau de "dilatação" esperado entre as partes metálicas.

O gráfico para seleção da dureza dos O'Rings poderá ser usado como uma referência para determinar se há necessidade ou não do uso de antiextrusores. A curva para dureza 90 Shore "A" pode ser usada também como guia para comportamento dos anéis Parbak® Parker.

Um anel antiextrusão Parbak® Parker, colocado no lado não pressurizado do O'Ring, evita que o mesmo seja introduzido na folga.

4) Você sabe o que é a Deformação Permanente em um O'Ring?

A deformação permanente é a perda total ou parcial da memória elástica de um elastômero, e é também uma das falhas mais frequentes dos O'Ring. Caracteriza-se por um duplo amassamento do O'Ring (radial ou axial) que pode facilmente ser observado quando se desmonta o O'Ring. Esse problema se deve à seleção de um composto incorreto, alojamentos mal dimensionados ou a exposição a temperaturas acima do limite suportado pelo elastômero selecionado.

A deformação permanente pode ser descrita simplesmente como a perda de ligações transversais entre as cadeias moleculares, ou como o surgimento de novas ligações (formadas por incidência de alta temperatura).

As causas da deformação permanente a altas temperaturas e a perda de eficácia da vedação são conhecidas, e podem ser descritas conforme segue:

- O composto do O'Ring tem uma deformação permanente muito pobre (já na fase de escolha do elastômero)
- · Alojamento com dimensões incorretas
- Temperaturas excessivas que causam aumento na dureza do O´Ring e perda de suas propriedades elásticas
- Aperto excessivo devido ao pequeno volume do alojamento
- Contato com fluido incompatível com o elastômero selecionado (graxa de montagem ou fluido de trabalho)
- O'Ring de qualidade irregular

Esse tipo de falha pode ser evitado tendo-se em conta os seguintes pontos:

- Seleção de um elastômero já com baixa deformação permanente
- Seleção de um elastômero compatível com as condições de trabalho
- Reduzir a temperatura do sistema que aloja o O'Ring
- Verificar acabamentos superficiais
- Comprovar se o composto do O'Ring é adequado
- · Redimensionar o alojamento

O'Ring com deformação permanente

5) Você sabe o que é a Falha Espiral ou O'Ring retorcido?

Essa é uma outra falha típica dos O'Ring, provocada parcialmente por deslizamento a seco. A superfície do O'Ring se caracteriza pela presença de marcas em formato espiral que algumas vezes produz cortes profundos causando a falha.

As causas são:

- Peças excêntricas
- Folgas grandes, o que significa que as partes móveis podem não estar concêntricas com as partes estáticas
- Acabamento superficial inadequado
- Lubrificação pobre ou inexistente
- · Material do O'Ring muito "macio"
- Movimento lento associado a curso longo (ruptura do filme de óleo)
- · O'Ring enrolado no ato da montagem

Essa falha pode ser evitada tomando-se as seguintes providências:

- Evitando-se a excentricidade
- · Melhorando o acabamento superficial
- Utilizando um O'Ring mais "duro"
- Melhorando a lubrificação (lubrificação interna ou canais de lubrificação)
- Reduzindo a deformação da seção transversal
- Selecionando um vedante com outro perfil

6) Você sabe o que é a Descompressão Explosiva em O'Ring?

Sob altas pressões os gases se difundem em todos os elastômeros, formando "bolhas" microscópicas entre as cadeias moleculares.

O'Ring retorcido com marcas espirais, ou com cortes espirais superficiais

Ao descomprimir-se rapidamente o gás, as "bolhas" se expandem rompendo o composto internamente e explodindo ocasionalmente na superfície do O'Ring.

É possível que o O'Ring inche ao ser descomprimido e retorne à sua forma original sem nenhuma evidência externa de falha ou ruptura.

Esse problema pode ser solucionado se tomadas as seguintes providências:

- Aumentar o tempo de descompressão
- Projetar a aplicação utilizando um O'Ring menor, de tal forma que o mesmo absorva menor quantidade de gás e que a ocupação do alojamento também seja menor permitindo maior expansão do O'Ring
- Selecionar um material mais resistente para o O'Ring
- Selecionar um composto com maior resistência à descompressão explosiva
- Caso nenhuma das alternativas acima solucione o problema e a pressão for excessiva considere o uso de uma vedação de metal da Parker.

O'Ring danificado por descompressão explosiva

7) Você sabe o que é a Abrasão (Desgaste) em O'Rings?

O desgaste é provavelmente o tipo de falha mais compreensível nos elementos de máquinas com movimento recíproco, rotativo ou oscilante. Para a compreensão desse tipo de falha há que se ter em conta que o atrito é proporcional à deformação, e que a pressão aplicada e o desgaste são proporcionais ao atrito, além de que, o incremento da temperatura também é proporcional ao atrito.

Esse tipo de falha caracteriza-se pelo achatamento de um dos lados do O'Ring, diferentemente da falha por deformação permanente em que se observa o achatamento de ambos os lados do O'Ring.

Em aplicações estáticas, o dano devido ao desgaste é causado por pressões pulsantes, que provocam a erosão do O'Ring sobre superfícies relativamente ásperas ou contra as bordas dos alojamentos.

As causas principais de desgaste são:

- Acabamento superficial inadequado
- Lubrificação pobre
- Incidência de alta temperatura
- Presença de impurezas no fluido do sistema
- Pressão alta e/ou pulsante em aplicações estáticas

Essa falha pode ser evitada com:

- Acabamento superficial correto
- Trocando o fluido do sistema por outro com melhores características lubrificantes
- Selecionando um composto com maior resistência à abrasão
- Selecionando um composto auto lubrificante
- Limpando todo o sistema, trocando o(s) filtro(s) e o fluido
- Usando algum composto com coating

O desgaste pode ser observado como um "achatamento" de um dos lados do O'Ring

8) Você sabe quais são as Falhas de Instalação em um O'Ring?

Muitas falhas dos O'Ring podem ser diretamente atribuídas a instalações inadequadas. Apesar de parecer simples o O'Ring é um instrumento de precisão que requer muito cuidado durante sua instalação. Uma das mais frequentes falhas de O'Ring é devido a instalação inadequada.

As principais causas podem ocorrer:

- Presença de cantos vivos nos alojamentos
- Insuficiência de chanfros de convite
- O'Ring superdimensionado para aplicações de pistão
- O'Ring subdimensionado para aplicações em haste
- Montagem do O'Ring torcido ou mordido
- O'Ring sem lubrificação durante a montagem
- O'Ring "sujo" durante a montagem
- O'Ring subdimensionado para aplicações em haste
- Alojamentos contaminados com partículas metálicas

Como evitar as falhas de montagem:

- Eliminando os cantos vivos do alojamento
- Chanfrando as bordas dos furos e eixos da montagem com ângulos entre 15° e 20°
- Garantindo a devida limpeza das contra peças e dispositivos de montagem
- Confirmando o código (tamanho) do O'Ring antes do mesmo ser instalado
- Proteger as roscas por onde o O'Ring passa
- Utilizar lubrificantes.